

Rythu Sadhikara Samstha

Government of Andhra Pradesh

Andhra Pradesh 'Zero-Budget' Natural Farming Vision 2024: A Systemwide Transformation

5 crore people | 60 lakh farmers | 80 lakh hectares

G R Dharmendar, Thematic Lead – ZBNF Training

Agriculture and Food Crisis

Farmer Distress

High Cost of Cultivation

Droughts, Crop Failures

Unseasonal Rains, Cyclones

Tenants, Migration

Uncertain Markets

Consumer Food Plate

Food Scarcity Chemical Residues Lack of Nutrients Health Hazards

Soil Degradation

Loss of top soil

Lack of water storage capacity

Decreased biodiversity FAO warning: Only 60 more harvest years

NEED FOR ALTERNATIVES TO ADDRESS THESE PROBLEMS

We all know where we are heading to...

EMP lears 1	PERAT	TURE 018 8 1	E CHA Project	NGE ions 2	020s-2	2090s		1900)			-2.0 °C -1	.0 °C +0.0	0°C +1.0°C	+2.0 °C
Afghanistar	n Albania	Algeria	Andorra	Angola	Argentina	Armenia	Australia	Austria	Azerbaljan	Bahamas	Bahrain	Bangladesh	Barbados	Belarus	Belgium
Belize	Benin	Bhutan	Bolivia	Bosnia and Herzegovina	Botswana	Brazil	Brunei	Bulgaria	Burkina Faso	Burundi	Cabo Verde	Cambodia	Cameroon	Canada	Central African Republic
Chad	Chile	China	Colombia	Comoros	Congo Dem. Rep.	Congo Rep.	Costa Rica	Côte d'Ivoire	Croatia	Cuba	Cyprus	Czechia	Denmark	Djibouti	Dominica
Dominican Republic	Ecuador	Egypt	Salvador	Equatorial Guinea	Eritrea	Estonia	Eswatini	Ethlopia	FIJI	Finland	France	Gabon	Gambia	Georgia	Germany
Ghana	Greece	Grenada	Guatemala	Guinea	Guinea- Bissau	Guyana	Halti	Honduras	Hungary	Iceland	India	Indonesia	Iran	Irag	Ireland
Israel	Italy	Jamaica	Japan	Jordan	Kazakhstan	Kenya	Kiribati	North	South	Kosovo	Kuwalt	Kyrgyz Republic	Lao PDR	Latvia	Lebanon
Lesotho	Liberia	Libya	Liechtenstein	Lithuania	Luxembourg	Macedonia FYR	Madagascar	Malawi	Malaysia	Maldives	Mall	Malta	Marshall Islands	Mauritania	Mauritius
Mexico	Micronesia	Moldova	Monaco	Mongolia	Montenegro	Morocco	Mozambique	Myanmar	Nambla	Nauru	Nepal	Netherlands	New Zealand	Nicaragua	Niger
Nigeria	Norway	Qman	Pakistan	Palau	Panama	Papua New Guinea	Paraguay	Peru	Philippines	Poland	Portugal	Qatar	Romania	Russian Federation	Rwanda
Samoa	San Marino	Sao Tome and Principe	Saudi Arabia	Senegal	Seychelles	Sierra Leone	Singapore	Slovak Republic	Slovenia	Solomon Islands	Somalia	South Africa	South Sudan	Spain	Sri Lanka
St. Kitts and Nevis	St. <mark>Lu</mark> cia	St. Vincent	Sudan	Suriname	Sweden	Switzerland	Syrian Arab Republic	Talwan	Tajikistan	Thalland	Timor- Leste	Togo	Tonga	Trinidad and Tobago	Tunisia
Turkey	Turkmenistan	Uganda	Ukraine	United Arab Emirates	United Kingdom	Uruguay	USA	Uzbekistan	Vanuatu	Venezuela	Vietnam	Yemen	Zambia	Zimbabwe	

Data sources:

Berkeley Earth temperature analysis (1900-2018) The 'rcp45' experiment of the CMIP5 (2020-2100) Base period 1951-1980.

Video license: CC-BY-4.0 Antti Lipponen (@anttilip)

Do we know the solution?

APZBNF Scaling-up Plan A systemwide transformation

Collaborations for Systemwide Transformation USD. 2.3B to scale up to all 6M farmers **Financial Resources** Vision 2024 Science behind ZBNF 2022 **Biodiversity Impacts** 4.1M farm **Existing Partners** 68% APPI 2020 **Climate Change Mitigation** UNEP 28% **ZBNF** Health Impacts FAO SIFF Sustainability Standards 15% ICRAF **BNP** Paribas Marketing Tie-ups CIRAD Global Knowledge Center IDH

Community-led Measurement Framework

the hallmark of APZBNF Programme

Planning, Roll-out, Extension, Tracking and Monitoring

Farming Action Plans

(523,000 with Women SHGs) Seed-to-Seed Verification led by CRPs Villages, Farmers, Farms, Practices, Models Internal, External Crop Cutting Experiments Panel Studies, Profiles, Case Studies Monthly Debriefing Meetings SHG-VO-GP; Cluster-Divn-District-State

Water: Conservation; Absorption from Air

Climate Stress Down

AP ZBNF Programme at a glance

2017-18

PovertyeradicationthroughwomensolidarityseededsolidarityseededSERP 20 years ago.2005onwards2005onwardsandCMSAandCMSAwomenselfhelpgroups-N.G.Osupport

2018-19

2019-20

20 years ago

2016-17

Seeding

AP ZBNF Programme at a glance

Social Profile of Existing 5.8 lakh ZBNF farmers in 3011 villages

Category	Farmers
Scheduled Caste	97,613
Scheduled Tribe	66,362
Backward Class	2,67,483
Other Category	1,36,846
Minority	10,429
Total	5,78,733

Women Empowerment by A.P through SERP A Programme since 1995

Women in Natural Farming: Our biggest Strength

Programme Management, transparency

Collective Action

Peer Learning

Farming Plans, and, consumption plans

Inclusive of the poorest

Saturation Approach

Farmer's Graduation

Emphasis on Mainstreaming Poorest of Poor

Special Plan for 1.52 lakh Landless Agriculture Labour

Target: Household food and nutrition security incomes: At least Rs.10,000 per month

Kitchen Garden	Facilitate Land Lease
Development of Assigned	Special Roles (ZBNF shops,
Lands	Seed Supply, Services)

Off-farm (backyard poultry, fish-farm ponds)

AP ZBNF Programme at a glance

Funding from: RKVY, PKVY, Government (GoAP, Gol)

		RASH KRISHI Y	ITRIYA Vikas ojana RKVY	परम्परागत कृषि विकास योजना Paramparagat Krishi Vikas Y Department of Agriculture, Cooperati सत्यमेन जयते	ojana on &
Fı	unds Receiv	ved	Rs. cr	Funds for Scaling-up 2019-20	Rs. cr
r	RKVY	ΡΚνΥ	Total	Proposed Funds from WB-funded APIIATP for initiating the work	261
5	34.04	18.34	52.38	in additional 827 GPs (up to two years).	
7	45.91	13.3	59.21		
3	38.38	10.93	49.31	Proposed Funds IFAD-funded APDMP for initiating the work in	104
9	63.00	90.32	153.32	additional 330 GPs (up to two years)	
I	181.33	132.89	314.22		
ar	n for 2019-2	20, 20-21	Rs. cr		
	PK//V		Total	Proposal to Bilateral Agency, KfW, for scaling up in 1,778 GPs for	2,479

posal to Bilateral Agency, KfW, for scaling up in 1,778 GPs	for
5 уе	ears
(Loan Agreement by Dec. 20)	19)

2015-16 2016-17 2017-18 2018-19 Total 1

Year

Plan for 2019-20, 20-21 R	s.	Cľ
---------------------------	----	----

Year	RKVY	PKVY	Total
2019-20	186.64	134.65	321.29
2020-21	320.00	134.65	454.65

Azim Premzi Philanthropic Initiatives has committed Rs 100 crores for 5 years and 22.88 crores were utilised

It takes Rs.37271 per capita over 5 years for

a farmer to adopt ZBNF

Ecosystem & Health Benefits to citizens

ZERO BUDGET NATURAL FARMING

What is it?

As per the proponent of ZBNF, Padmasri Subahsh Palekar, the model involves intense intercropping, where the income from intercrops compensate all the cultivation costs; and the income from main crop is actual real income, as if that has come without investments.

It's a package of technical innovations built on harnessing the high incomes potential from intensive multi-cropping, utilizing local inputs (desi seeds, animal dung and urine, certain tree products for pest management, etc.).

The principle is that once the biological component of soil is active, the physical properties (porosity, stable soil aggregates, infiltration, habitat for soil organisms) change that leads to improved chemical properties (nutrient supply)

Living Roots are vital

Plant converts water and CO2 into sugars in the presence of sunlight

- Root exudates are pumped into soil by diverse and intense root activity
- Root exudates help soil microbiome to flourish and soil food web is triggered.
- Improved Soil biome brings changes in physical properties and chemical properties of soil.

Therefore this system does not require external nutrients or bulk manures to be transported and applied to soils

The Soil Food Web

- Animal dung just as microbial inoculum, not essentially for nutrients
- Plant/tree based biomass (residues & root exudates) in bulk as food for soil life
- Soil microbiology is a complicated area for study and is therefore undermined in present policies and practices
- Above ground diversity contributes to below ground diversity
- Increase in carbon in soil efficient C sequestration
- Minimum/No-tillage is the goal
- Benefits of biomass mulching, intercropping, cover cropping, conservation tillage, compost teas / liquid manures and biopesticides are well published worldwide

Zero-Budget Natural Farming

Farming in harmony with nature. | A transformational technology

Farmers' welfare

Reduced costs and risks,
increased yields,
regular income,
climate change resilience

Freedom from hunger

More food,safe food and nutritious food Reverse
 migration

villages

Youth welfare

to

Environment

Enhanced soil
health, water
conservation,
regenerated
coastal ecosystem,
biodiversity.

Safeguarding our collective *future*

Four Wheels of ZBNF

Higher Yields, diverse crops, Lower Costs

Enhanced Soil Fertility, soil porosity, water infiltration

Reduce water requirement for crops, harnessing atmospheric water

Resilience to Climate Shocks

Soil Carbon enhancement

Microbial seed coating

through cow urine and

dung -based

formulations

Enhance soil microbiome through an 'inoculum' of cow dung, cow urine and other ingredients

Ground to be kept covered with crops and crop residues as mulching Fast buildup of soil humus through ZBNF leading to soil aeration and water vapor harnessing

Farmer led extension system

- Setting right the broken extension system.
- Farmers (best practitioners residing in villages, called as Community Resource Persons) convincing others; and assisting the field agriculture functionaries as change agents. Last mile delivery.
- At present 930 Senior CRPs are working; 4000 Internal CRPs (ICRPs).
- Adoption of all practices under AESA based IPM and INM practices. They ensure adoption of all practices, Conduct crop-cut, trouble shooting, etc.

FAO supported Farmer Field Schools

- FAO as the knowledge partner
- Led by Natural Farming Fellows to train ICRPs and Lead Farmers
- 80 FFS launched in Kharif 2019
- 150 FFSs will be launched from Rabi 2019

And the series of the series o

Agro Eco System Analysis based learning and decision-making

Crop-Cut Exercises

Carried out by Centre for Economics and Social Studies, an autonomous institution. Covering 1447 farmers' yields.

- Paddy 1008 farmers (ZBNF 503 and Non-ZBNF 505)
- Maize 35 farmers (ZBNF-17 and Non-ZBNF 18)
- Groundnut 120 farmers (ZBNF 47 and Non-ZBNF 73)
- Cotton 130 farmers (ZBNF 53 and Non-ZBNF 77)
- Chickpea 27 farmers (ZBNF 15 and Non-ZBNF 12)
- Cashew 57 farmers (ZBNF 37 and Non-ZBNF 20)
- Citrus 55 farmers (ZBNF 26 and Non-ZBNF 29)
- Tomato 15 farmers (ZBNF 9 and Non-ZBNF 6)

There is no significant difference in the yield of Paddy between ZBNF and non-ZBNF

There is no significant difference in yields between the reported yield by farmers and the yield arrived at through CCEs.

Farmers' incomes has been improved by 8 per cent and the higher improvements in the other sources of irrigation and in non-delta districts.

Paid out cost/acre of Paddy (Rs)

There is reduction of Rs.2318 in the paidout cost due to the adoption of ZBNF leading to a decline by 14% in the cost of cultivation

The higher response of the yield to the biological inputs has reduced the cost per quintal of production of paddy

Yield / Acre of Maize (Qtls)

Paid out cost/acre of Maize (Rs)

Net Returns / acre of Maize (Rs)

Yield of Maize under ZBNF is significantly higher than that under non-ZBNF.

This provides compelling evidence that the yield response to biological inputs is much higher than that of chemical inputs.

Highest increase in net income of farmers due to ZBNF is from Maize (111 percent)

Yield of crop under ZBNF found to be on par and in fact marginally higher but insignificant

Net returns from ZBNF is higher by around Rs.4000 per acre recording an increase of 41% over non-ZBNF

Insignificant difference between yields of ZBNF and non-ZBNF

ZBNF farmer benefited of Rs.3611 in the net income over non-ZBNF recording 45% increase over non-ZBNF

No significant difference in the yields between ZBNF and non-ZBNF

Increase in the net income of Tomato under ZBNf over non-ZBNF is around Rs.37830 per acre – an increase of 41%.

Impact of ZBNF on soil chemical properties

Analytical report of Haryana Agricultural University, KVK, Kurukshetra.

#	Particular	2017 June	2018 June	% variation
	OC and Macronutrients			
1	OC (%)	0.61	0.91	49.2
2	P (Kg/ha)	19	36	89.5
3	K (Kg/ha)	186	199	7.0
	Micronutrients			
1	Zn (ppm)	1.64	2.16	31.7
2	Fe (ppm)	19.21	24.48	27.4
3	Cu (ppm)	1.78	2.34	31.5
4	Mn (ppm)	5.7	12.18	113.7

#	Particular	2017 June	2018 Oct	% variation
	Micronutrients			
1	Zn (ppm)	1.42	2.2	54.9
2	Fe (ppm)	21.76	46.58	114.1
3	Cu (ppm)	1.84	2.67	45.1
4	Mn (ppm)	6.63	7.79	17.5

Best Cases in 2018

Сгор	ZBNF Yield (Kgs/acre)	Non-ZBNF Yield (Kgs/acre)	Percentage Change	Notes
Guli Ragi	1250	450	178 %	Farmer: Trimurthulu, Ananthagiri Mandal, Vishakapatanam
SRI Ragi	1320	450	193 %	Farmer: K Pandanna, Paderu, Vishakapatanam
Sama	717	350	104 %	Farmer: P Sonnu, Araku, Vishakapatanam
SRI Paddy	2350	1550	52 %	Farmer: Paradani Jogi Raju (farmer), Emaduguala mandal, Vishakapatanam
Coffee	103	67	54 %	Farmer in D Gonduru, Kadagaputu, Vishakapatanam
Cotton	557	360	54 %	Farmer: K Ganapathi, Duddukhallu, Vizianagaram
Cashew	900	600	50 %	Farmer: K Santa Kumari, Rampachodavaram, East Godavari

2 acres of land Farming since 15 years

Chemical farming

Adverse health

Left farming leased land

- Community Resource Person encourage to take up ZBNF
- Took ZBNF paddy on 0.25 acres as experiment
- Phenomenal result achieved
- Encouraged by this, took back leased land to do ZBNF in all 2 acres

Non ZBNF Paddy

Cost of cultivation per acre(Rs.)	20,500
Gross income per acre (Rs.)	47,250
Net income per acre (Rs.)	26,750

ZBNF changing lives

Mandal Maheswari Sobhandhripuram village Krishna District Farmer & Community Resource Person

- Bought cow for input preparation
- Discuss ZBNF with her SHG member
- Grounded ZBNF kitchen garden
- Provides free ghanajeevamrutham and vegetable to villagers
- Phenomenal community presence, selected as community resource person

ZBNF Paddy

Cost of cultivation per acre (Rs.)	13,200
Gross income per acre (Rs.)	61,425
Net income per acre (Rs.)	48,225

ZBNF Farms show resilience to extreme weather events

		ZBNF (n=24)	Non-ZBNF (n=24)
	Submergen ce	0 cases	All suffered 25-50% due to submergence
	Lodging	Only 1 case suffered 25- 50% lodging	All 24 cases suffered 25-50% lodging
	Wind damage	All cases upto 25%	All cases from 25- 50%
	Breakage of main stems	1 case suffered 25%	3 cases suffered between 25-75%
	Expected yield drop	1 case expects 25% yield drop	All cases expect 25- 50% yield drop
	Farmers perception – crop resilience	All farmers perceived resilience as important factor for ZBNF crop	All farmers perceived their chemical plots have no resilience.

Pethai cyclone impact assessment 2018

Climate Change Resilience: Pethai Cyclone, Dec 2018

Banana

Banana

Non ZBNF

Chillies

Chillies

Paddy

Evolution of research framework

- RySS has organized a workshop in collaboration with University of Reading (UK), World AgroForestry (Nairobi) on "Establishing the Scientific underpinning of ZBNF" involving experts from Indian Institute of Soil Science (Bhopal), Indian Institute of Science (Bangalore), IIT-Mumbai, EcoScience Research Foundation, APPI, CSA, etc.
- Various hypotheses on ZBNF based on the observations by practitioners were discussed.
- As the output, the research needs are identified and prioritized.

The big five key research topics

- 1. Nutrient budget and how ZBNF makes nutrients bioavailable to plants
- 2. Carbon budget and speed of humus (stable soil organic matter) formation and dynamics
- 3. How ZBNF practice (variable uptake and context) leads to change in yield (in relation to input cost), soil health, food quality, resistance to climatic stress (drought, flooding and cyclones)
- 4. The microbial diversity of innoculum (variable with animal type) and its impact on the soil microbiome
- 5. Impact of ZBNF on water harvesting, water holding capacity of soil and water use efficiency

Land Degradation Surveillance Framework – World AgroForestry, Nairobi

- 6 Sites for Survey
- Each site is 100 sq.km.
- A systematic field-based assessment of multiple variables at the same geo-referenced location
- Allows for rapid assessments of indicators of land and soil health
- Allows for the production of high quality maps of key indicators
- Robust statistical analysis on drivers of degradation
- Can be used to monitor changes over time

University of Reading, UK

Production systems comparison experiments

- 30 experiments with NFFs
- Comparing Conventional, Organic and ZBNF production systems in 6 districts of AP

ZBNF practices – exclusion experiments

• 5 experiments with Research Coordinators in 5 districts

Collaborations for establishing the science behind ZBNF

Name of the Research/study	Institution	Focus areas	Study Reach	Locations
Land Degradation Surveillance Framework (LDSF)	World Agro Forestry (ICRAF, Nairobi)	To generate a biophysical baseline at landscape level, and a monitoring and evaluation framework for assessing processes of land degradation and the effectiveness of rehabilitation measures (recovery) over time.	600 square kilometers	6 districts of Andhra Pradesh
Life Cycle Analysis (LCA) of ZBNF (in comparison with conventional) practices	World Agro Forestry (ICRAF, Nairobi)	To compare the GHGs emissions of ZBNF fields with Conventional fields	6 crops 702 pairs of farmers	13 districts of Andhra Pradesh
Agriculture production systems comparison	University of Reading (UK)	To compare the effect of Conventional, Organic and ZBNF production practices on the soil physical chemical and biological properties	25 experiments	5 districts of Andhra Pradesh
Factor contribution of ZBNF practices	University of Reading (UK)	To understand the contribution of various practices of ZBNF on crop growth	5 experiments	5 districts of Andhra Pradesh

Collaborations for establishing the science behind ZBNF

Name of the Research/study	Institution	Focus areas	Study Reach	Locations
365 Days Green Cover Experiments	RySS (Science Team)	To test the potentiality of ZBNF methods for sustaining 365 DGC; and to strengthen district level protocols	65 NFFs (5 per district)	All across AP
Foresight	CIRAD, (France) FAO-UN (India)	Scenarios for 2030/2050 with successful implementation of ZBNF	Historical data from 1970 onwards	AP
Earth worm study (All six Agro-climatic zones)	RySS	Comparing Earth worms population in ZBNF fields and Non-ZBNF fields	1022 Samples exploring 1022 sq.m.	Across AP
Pollinator Study	Indian Institute of Science and Education Research (IISER)	Pollinators awareness to the farming community	Chittoor	АР
365 Days- Green coverage	RySS (Science Team)	Evolve new and strengthen existing protocols for 365 days green coverage	65 experiments in all 13 districts	Across AP

Collaborations for establishing the science behind ZBNF

Name of the Research/study	Institution	Focus areas	Study Reach	Locations
Comprehensive survey for assessing the impact of ZBNF in AP	Centre for Economics and Social Studies (CESS)	To compare yields, costs, Net returns to ZBNF farmers with Non-ZBNF Farmers	Major crops	Covers all 13 districts
Performance Evaluation, impact assessment & Monitoring services for CR- ZBNF Programme	ICRAF	Impact assessment	Socio- economic & Technical evaluation	399 mandals of Phase-I
ZBNF for Sustainable Development Goals	Council on Energy, Environment and Water (CEEW)	Mapping the social, economic and environmental impacts of ZBNF programme vis-à-vis specific targets under each Sustainable Development Goal (SDG).	169 SDG targets across the programme	All 13 districts
ZBNF and its impacts on the saving of inputs and related issues	Council on Energy, Environment and Water (CEEW)	Estimate the usage quantity and value of chemical fertilizer and pesticide Consumption; Project estimated savings to Government in fertilizer subsidy as ZBNF scales up	Fertilizer subsidies, pesticides, savings to govt	State-level

UoR Research studies – parameters involved

PHYSICAL	CHEMICAL	BIOLOGICAL	PLANTS LEVEL	
oil texture	Bioavailable nutrients using		Measuring biometrics	
oil Structure	Plant Root Stimulators		Spectral analysis (MIR),	
nfiltration	spectral analysis (MIR XRF) – low throughput system in. 96 well auto sampler.	Enzyme assays [(β-D-cellubiosidase (Cellulose degradation); leucine aminopeptidase (protein degradation): Phosphatase (Phosphorus mineralization) for enzymes involved in C, N (and C) and P mineralization, respectively)]	N P K 7n C (other	
Bulk density			micronutrients)	
oil temperature				
oil Moisture	Soil nutrients (N, P, K, Ca, Mg, S, Zn, Mn, Fe, Cu)		Crop biomass (harvestable, shoot and root)	
vater holding capacity	Organic carbon			
	EC	DNA extraction for amplicon sequencing		
oil colour (munsell color hart values from app)	рН	Earthworm count	Visual evaluation of nodulation rates in legumes, mycorrhizal colonization	
	oil texture oil Structure oil Structure oiltration ulk density oil temperature oil Moisture vater holding capacity oil colour (munsell color hart values from app)	Dil textureBioavailable nutrients using Plant Root StimulatorsDil StructureSpectral analysis (MIR XRF) – low throughput system in. 96 well auto sampler.Dil temperatureSoil nutrients (N, P, K, Ca, Mg, S, Zn, Mn, Fe, Cu)Dil MoistureOrganic carbonVater holding capacityOrganic carbonDil colour (munsell color hart values from app)PH	DifferenceContinuenceDifferenceDifferenceBioavailable nutrients using Plant Root StimulatorsEnzyme assaysDifferenceSpectral analysis (MIR XRF) – low throughput system in. 96 well auto sampler.Enzyme assaysDifferenceIow throughput system in. 96 well auto sampler.Enzyme assaysDifferenceSoil nutrients (N, P, K, Ca, Mg, S, Zn, Mn, Fe, Cu)(β-D-cellubiosidase (Cellulose degradation); leucine aminopeptidase (protein degradation): Phosphatase (Phosphorus mineralization) for enzymes involved in C, N (and C) and P mineralization, respectively)]DNA extraction for amplicon sequencingDNA extraction for amplicon sequencingDil colour (munsell color hart values from app)PHEarthworm count	

World AgroForesty – Research parameters

#	PHYSICAL	CHEMICAL	BIOLOGICAL	LANDSCAPE	GHG Emissions
	Soil texture	Bioavailable nutrients		Tree density	
	Soil Structure	Stimulators	ENZYME ASSAYS	Shrub density	Sources of carbon-di-
	Infiltration	spectral analysis (MIR XRF) – low throughput	β-D-cellubiosidase (Cellulose	Vegetation structure and distribution	oxide, Nitrous oxide and Methane
	Bulk density	system in. 96 well auto	degradation	Tree biodiversity	
	Soil temperature	sampler.	leucine aminopeptidase	Shrub biodiversity	
	Soil Moisture water holding	Soil nutrients (N, P, K, Ca, Mg, S, Zn, Mn, re Fe, Cu) ^{ng} Organic carbon	Phosphatase (Phosphorus mineralization) for enzymes involved in C, N (and C) and P mineralization, respectively)	Herbaceous cover type and density	
	capacity			Rangeland module	
	Root depth restriction	EC		Grass species richness and abundance	
		рН	DNA extraction for amplicon sequencing	Grass perennial to annual ratio	
	Soil colour (munsell color chart values from app)		Earthworm count	Distance measurements for perennial grasses	
				Soil Erosion	

INNOVATIONS

- 365-Days Green Cover: The successful results of Premonsoon dry sowings across the state with ZBNF practices has assured that it is possible to grow crops even under moisture stress conditions. The results have demonstrated good monetary returns and longer ground cover with crops.
 - During this year, 23,693 farmers will be doing 365-DGC models in 6,318 acres across the state.
- 5-Layer models: A multitiered intensive food crop model involving 20-30 different crops is being taken up by 300 farmers in 300 acres during 2019-20

The third wheel in action.

Covering the Ground, 365 days-a-year Pre-monsoon Sowing and Dry Sowing 23,000 farmers enrolled for 365-Day farming in 13 districts

Intergovernmental Panel on Climate Change (IPCC)

> Z.B.N.F has a critical role in soil carbon sequestration, apart from its all other benefits

How Do Carbon Storage Techniques Stack Up?

To meet the goals of the Paris climate agreement and keep global warming under 1.5 degrees Celsius, the world will have to increase the amount of carbon dioxide pulled from the atmosphere, the IPCC reports. It compared the costs and storage potential of six key methods of carbon dioxide removal. Soil carbon sequestration is one of the cheapest with the most potential.

SOURCE: IPCC

InsideClimate News

10 Elements of AgroEcology - FAO

Sustainable Development Goals addressed by APZBNF

National Recognitions for APZBNF

Global Recognitions for APZBNF

